Cayley Hypersurfaces

نویسنده

  • Vladimir Ezhov
چکیده

This is the Cayley surface when N = 3. The next few are as follows. x4 = x1x3 + 1 2 x2 2 − x1 x2 + 1 4 x1 4 x5 = x1x4 + x2x3 − x1 x3 − x1x2 2 + x1 x2 − 1 5 x1 5 x6 = x1x5 + x2x4 + 1 2 x3 2 − x1 x4 − 2x1x2x3 − 1 3 x2 3 + x1 x3 + 3 2 x1 x2 2 − x1 x2 + 1 6 x1 . Since the first term in (1) is −xN and this is the only occurrence of this variable, these hypersurfaces are polynomial graphs over the remaining variables. The Cayley surface is affine homogeneous. This follows immediately from Φ3 being annihilated by the following two linearly independent affine vector fields: ∂ ∂x1 + x1 ∂ ∂x2 + x2 ∂ ∂x3 and ∂ ∂x2 + x1 ∂ ∂x3 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A characterization of Cayley Hypersurface and Eastwood and Ezhov conjecture

Eastwood and Ezhov generalized the Cayley surface to the Cayley hypersurface in each dimension, proved some characteristic properties of the Cayley hypersurface and conjectured that a homogeneous hypersurface in affine space satisfying these properties must be the Cayley hypersurface. We will prove this conjecture when the domain bounded by a graph of a function defined on Rn is also homogeneou...

متن کامل

Multivariate Lagrange Interpolation and an Application of Cayley-Bacharach Theorem For it

In this paper,we deeply research Lagrange interpolation of n-variables and give an application of Cayley-Bacharach theorem for it. We pose the concept of sufficient intersection about s(1 ≤ s ≤ n) algebraic hypersurfaces in n-dimensional complex Euclidean space and discuss the Lagrange interpolation along the algebraic manifold of sufficient intersection. By means of some theorems ( such as Bez...

متن کامل

Intersection multiplicity numbers between tropical hypersurfaces

We present several formulas for the intersection multiplicity numbers considered in [3]. These numbers are associated to any dimensional cell of the common intersection of the tropical hypersurfaces. The first formula involves a sum of generalized mixed volumes, and turns out to be equal to the absolute value of the Euler characteristic of some complex toric complete intersection. Another formu...

متن کامل

Closed Form Expressions for Hodge Numbers of Complete Intersection Calabi-Yau Threefolds in Toric Varieties

We use Batyrev-Borisov’s formula for the generating function of stringy Hodge numbers of Calabi-Yau varieties realized as complete intersections in toric varieties in order to get closed form expressions for Hodge numbers of Calabi-Yau threefolds in five-dimensional ambient spaces. These expressions involve counts of lattice points on faces of associated Cayley polytopes. Using the same techniq...

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000